Coexpression with the inward rectifier K(+) channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide.

نویسندگان

  • U Russ
  • A Hambrock
  • F Artunc
  • C Löffler-Walz
  • Y Horio
  • Y Kurachi
  • U Quast
چکیده

ATP-sensitive K(+) channels are closed by the hypoglycemic sulfonylureas like glibenclamide (GBC) and activated by a class of vasorelaxant compounds, the K(+) channel openers. These channels are octamers of Kir6.x and sulfonylurea receptor (SUR) subunits with 4:4 stoichiometry. The properties of the opener-sensitive K(+) channel in the vasculature are well matched by the SUR2B/Kir6.1 channel; however, the GBC sensitivity of the recombinant channel is unknown. In binding experiments we have determined the affinity of GBC for SUR2B and the SUR2B/Kir6.1 channel and compared the results with the channel blocking potency of GBC. All experiments were performed in whole transfected human embryonic kidney cells at 37 degrees C. The equilibrium dissociation constants (K(D)) of GBC binding to SUR2B and to the SUR2B/Kir6.1 complex were determined to be 32 and 6 nM, respectively; the K(D) value of the opener P1075 (N-cyano-N'-(1, 1-dimethylpropyl)-N"-3-pyridylguanidine) ( approximately 5 nM) was, however, not affected by cotransfection. In whole cell voltage-clamp experiments, GBC inhibited the SUR2B/Kir6.1 channel with IC(50) approximately 43 nM. The data show that, in the intact cell: 1) SUR2B, previously considered to be a low-affinity SUR, has a rather high affinity for GBC; 2) coexpression with the inward rectifier Kir6.1 increases the affinity of SUR2B for GBC; 3) the recombinant channel exhibits the same GBC affinity as the opener-sensitive K(+) channel in vascular tissue; and 4) the K(D) value of GBC binding to the octameric channel is 7 times lower than the IC(50) value for channel inhibition. The latter finding suggests that occupation of all four GBC sites per channel is required for channel closure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a mutant sulfonylurea receptor SUR2B with high affinity for sulfonylureas and openers: differences in the coupling to Kir6.x subtypes.

ATP-dependent K(+) channels are composed of pore-forming subunits of the Kir6.x family and of sulfonylurea receptors (SURs). SUR1, expressed in pancreatic beta-cells, has a higher affinity for sulfonylureas, such as glibenclamide, than SUR2B, expressed in smooth muscle. This difference is mainly caused by serine 1237 in SUR1 corresponding to tyrosine 1206 in SUR2B. To increase the affinity of S...

متن کامل

Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel.

The activation of ATP-sensitive K+ channels by protein kinase A in vascular smooth muscle is an important component of the action of vasodilators. In this study, we examine the molecular mechanisms of regulation of the cloned equivalent of this channel comprising the sulfonylurea receptor 2B and the inward rectifier 6.1 subunit (SUR2B/Kir6.1). Specifically, we focus on whether the channel is di...

متن کامل

A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ Channels

We have cloned an isoform of the sulfonylurea receptor (SUR), designated SUR2. Coexpression of SUR2 and the inward rectifier K+ channel subunit Kir6.2 in COS1 cells reconstitutes the properties of K(ATP) channels described in cardiac and skeletal muscle. The SUR2/Kir6.2 channel is less sensitive than the SUR/Kir6.2 channel (the pancreatic beta cell KATP channel) to both ATP and the sulfonylurea...

متن کامل

Interaction of the sulfonylthiourea HMR 1833 with sulfonylurea receptors and recombinant ATP-sensitive K(+) channels: comparison with glibenclamide.

The novel sulfonylthiourea 1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea (HMR 1883), a blocker of ATP-sensitive K(+) channels (K(ATP) channels), has potential against ischemia-induced arrhythmias. Here, the interaction of HMR 1883 with sulfonylurea receptor (SUR) subtypes and recombinant K(ATP) channels is compared with that of the standard sulfonylurea, glibe...

متن کامل

Hypercapnic acidosis activates KATP channels in vascular smooth muscles.

ATP-sensitive K+ channels (KATP) couple intermediary metabolism to cellular activity, and may play a role in the autoregulation of vascular tones. Such a regulation requires cellular mechanisms for sensing O2, CO2, and pH. Our recent studies have shown that the pancreatic KATP isoform (Kir6.2/SUR1) is regulated by CO2/pH. To identify the vascular KATP isoform(s) and elucidate its response to hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 1999